Frequency and Q factor control of nanomechanical resonators
نویسندگان
چکیده
We present an integrated scheme for dielectric drive and read-out of high-Q nanomechanical resonators that enable tuning of both the resonance frequency and quality factor with an applied dc voltage. A simple model for altering these quantities is derived, incorporating the resonator’s complex electric polarizability and position in an inhomogeneous electric field, which agrees very well with experimental findings and finite element simulations. Comparing two sample geometries demonstrates that careful electrode design determines the direction of frequency tuning of flexural modes of a string resonator. Furthermore, we show that the mechanical quality factor can be voltage reduced sixfold. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4751351]
منابع مشابه
High frequency MoS2 nanomechanical resonators.
Molybdenum disulfide (MoS2), a layered semiconducting material in transition metal dichalcogenides (TMDCs), as thin as a monolayer (consisting of a hexagonal plane of Mo atoms covalently bonded and sandwiched between two planes of S atoms, in a trigonal prismatic structure), has demonstrated unique properties and strong promises for emerging two-dimensional (2D) nanodevices. Here we report on t...
متن کاملMacroscopic tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators.
We have employed a chip-bending method to exert continuous and reversible control over the tensile stress in doubly clamped nanomechanical beam resonators. Tensile stress is shown to increase the quality factor of both silicon nitride and single-crystal silicon resonators, implying that added tension can be used as a general, material-independent route to increased quality factor. With this dir...
متن کاملEvidence of universality in the dynamical response of nanomechanical ultra-nanocrystalline diamond resonators at millikelvin temperatures
We report millikelvin-temperature measurements of dissipation and frequency shift in megahertzrange resonators fabricated from ultra-nanocrystalline diamond. Frequency shift δf/f0 and dissipation Q−1 demonstrate temperature dependence in the millikelvin range similar to the glass model of two level systems. The logarithmic temperature dependence of δf/f0 is in good agreement with the glass mode...
متن کاملHigh, size-dependent quality factor in an array of graphene mechanical resonators.
Graphene's unparalleled strength, stiffness, and low mass per unit area make it an ideal material for nanomechanical resonators, but its relatively low quality factor is an important drawback that has been difficult to overcome. Here, we use a simple procedure to fabricate circular mechanical resonators of various diameters from graphene grown by chemical vapor deposition. In addition to highly...
متن کاملDissipation in nanocrystalline-diamond nanomechanical resonators
We have measured the dissipation and frequency of nanocrystalline-diamond nanomechanical resonators with resonant frequencies between 13.7 MHz and 157.3 MHz, over a temperature range of 1.4–274 K. Using both magnetomotive network analysis and a time-domain ring-down technique, we have found the dissipation in this material to have a temperature dependence roughly following T, with Q'10 at low t...
متن کامل